RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FOURTH SEMESTER EXAMINATION, MAY 2018

SECOND YEAR (BATCH 2016-19)

Date : 23/05/2018 Time : 11.00 am - 1.00 pm COMPUTER SCIENCE (General)

Full Marks : 50

[Use a separate Answer Book for each group]

Paper : IV

Group - A

1.	Answer <u>any one</u> question :		
	a)	Compare and contrast Mesh topology with Ring topology with proper diagram of each.	
	b)	Write the function of data link layer in OSI model.	
An	swer	r <u>any two</u> questions from <u>Question Nos. 2 to 5</u> :	[2×10]
2.	a)	Briefly discuss the following fields in TCP segment format.	
	,	Acknowledgement Number, RST, PSH, URG, SYN.	[5]
	b)	Write a short note on NAT.	[3]
	c)	Give the difference between IPV4 and IPV6 addressing protocol.	[2]
3.	a)	Write down the format of E-Mail message header.	[6]
	b)	What do you mean by service point addressing and synchronization of bits.	[2+2]
4.	a)	Briefly discuss about FTP process model along with FTP commands.	[3+3]
	b)	What is URL? What do you mean by DNS?	[2+2]
5.	a)	What are the different networking devices? — Explain two of them in details.	[1+2+2]
	b)	What is HTTP? What is the remainder obtained by dividing $x^7 + x^6 + x^5 + 1$ by the generated	F.4 . 43
		polynomial $x^3 + 1$ using CRC method?	[1+4]
		<u>Group - B</u>	
6.	An	swer <u>any one</u> question :	[1×5]
	a)	Define Tree. Prove that a connected graph with n vertices and $(n - 1)$ edges in a tree.	[2+3]
	b)	Prove that in a complete graph G with m vertices, there are $\binom{(m-1)}{2}$ edges disjoint	
	- /	Hamiltonian circuits, if m is an odd number ≥ 3 .	[5]
1		any two questions from Question Nos. 7 to 10.	[2]/10]
An	swer	<u>any two</u> questions from <u>Question Nos. 7 to 10</u> .	[2×10]
7.	a)	Define Spanning Tree. Describe the Prim's algorithm for finding the minimum spanning tree for a graph G	[1+5]
	b)	Define the terms eccentricity and centre of a graph G. Illustrate with an example.	[2+2]
8	a)	Prove that a simple graph with a vertices and K components can have at most	
0.	u)	(n-K)(n-K+1)/2 edges.	[4]
	b)	Prove that in a simple connected graph with n vertices $(n > 1)$, at least two vertices are of	
		equal degrees.	[3]
	c)	What is isomorphic graph?	[2]
	a)	Define Hamiltonian circuit.	[1]

9.	a)	Define bipartite graph.	[2]
	b)	Prove that a graph with at least one edge is 2-chromatic if and only if it has no circuits of odd	
		length.	[3]
	c)	"A complete graph of five vertices is non-planar" —Justify it.	[4]
	d)	Define K-chromatic graph.	[1]
10.	a)	Show that a Hamiltonian Path is a spanning tree.	[3]
	b)	Define the terms with example.	[3×2]
		i) Clique	
		ii) Biconnected Graph	
		iii) Planar Graph	
	c)	Define Pendant Vertex.	[1]

_____ × _____